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Abstract −−−−We show that dispersion effects due to local velocity gradients and transverse molecular diffusion in
chromatographs and chemical reactors can be better described in terms of averaged models that are hyperbolic in the
longitudinal coordinate and time, and with an effective local time or length scale in place of the traditional axial
dispersion coefficient. This description not only eliminates the use of artificial exit boundary conditions but also
inconsistencies such as upstream propagation and infinite speed of signals associated with the traditional parabolic
averaged models. We also show that the hyperbolic models can describe dispersion effects accurately and have a much
larger region of validity in the physical parameter space compared to the traditional parabolic models. Our method of
obtaining averaged models from the governing partial differential equations is based on the Lyapunov-Schmidt tech-
nique of classical bifurcation theory and is rigorous. We illustrate our approach using three well known chemical
engineering problems.

Key words: Dispersion, Multi-scale Averaging, Lyapunov-Schmidt Reduction, Chromatography, Chemical Reactors

INTRODUCTION

Mathematical models that describe the steady-state and transient
behavior of chromatographs and reactors are obtained by combin-
ing the conservation laws (continuity, momentum, species, and en-
ergy balances) with the various constitutive equations for the trans-
port and rate processes (adsorption, desorption, reaction, etc). De-
pending on the simplifications, or assumptions made and the level
of detail included at various length and time scales, these models
can vary in complexity as well as the number of physico-chemical
parameters describing the phenomenon of interest. In addition, due
to the strong coupling between the transport and rate processes and the
dependence of the kinetic and transport rates on the state variables,
the model equations are usually highly nonlinear and are known to
exhibit a variety of complex spatio-temporal patterns. For most cases
of practical interest, even with the present day computational power,
it is impractical to solve such detailed models and explore all the
different types of solutions that exist in the multi-dimensional pa-
rameter space. Even in cases where detailed solutions are obtained,
the numerical results do not provide directly the results an engineer
is usually interested in, such as the average exit conversion of a re-
actant or the propagation speed of a thermal or concentration front,
unless some averaging or coarse-graining is done on the numerical
results. Accurate low-dimensional models in terms of average and
measurable variables, such as the cup-mixing temperature or con-
centration, are desired for the purpose of design, control and opti-
mization of chemical processes.

The usual procedure in chemical engineering to develop low-
dimensional or averaged models of reactors and chromatographs is

to make certain a priori assumptions on the length and time sca
of reaction, diffusion and convection and apply the conserva
principles only at the macroscopic level. For example, under 
assumption of perfect mixing or no spatial gradients, the mode
a continuous-flow stirred tank reactor (CSTR) consists of ordin
differential equations describing the species and energy balan
Similarly, the model for a single solute adsorption column un
the assumption of flat velocity profile, no radial diffusion and loc
equilibrium consists of a single hyperbolic equation describing 
solute concentration in the fluid phase [Rhee et al., 1986]. The
sumptions made in developing such simplified low-dimension
models usually ignore some important physics at small scales
can influence the macroscopic behavior (e.g., exit conversion
selectivity in a reactor). When the predictions of such ad-hoc m
els do not match with experimental results, the low-dimensio
models are modified by expanding the degrees of freedom by
ing concepts such as residence time distribution, non-ideal flow 
mixing, and introducing empirical constants such as effective a
dispersion coefficients. The short-comings of this approach (s
as the dependence of the effective dispersion coefficients on
kinetic parameters and inconsistencies such as infinite propag
speed of signals even in convection dominated systems) have 
recognized recently.

In this work, we demonstrate a systematic method for obtain
low-dimensional models by relaxing some of the a priori assump-
tions. We start with more detailed models based on the fundam
tal laws and take advantage of the separation of the length or 
scales to average (or reduce the spatial degrees of freedom) t
tain low-dimensional averaged models. Our method of averagin
rigorous and is based on the Lyapunov-Schmidt technique of cl
cal bifurcation theory. Intuitively speaking, our method of avera
ing is equivalent to an expansion of a more detailed fundame
model in terms of one or more small parameters representing
aration of length or time scales in the original model. In such
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expansion, the lowest order term is the simplified model while high-
er order corrections modify the model, just as the terms in the Taylor
series expansion of a scalar function of single variable, by includ-
ing the small but significant physical phenomena such as local ve-
locity gradients and molecular diffusion, finite rate of adsorption, etc.

In the next section, we outline our spatial averaging technique.
In section 3, we examine in some detail the classical Taylor-Aris
problem of dispersion of a non-reactive solute in laminar flow in a
tube. In section 4, we derive low-dimensional hyperbolic models
for chromatographic columns. Section 5 presents low-dimensional
models for tubular reactors with homogeneous or catalytic reac-
tions. In the last section, we discuss some advantages and possible
extensions of our approach.

THE LYAPUNOV-SCHMIDT METHOD
FOR AVERAGING OF PDEs

The Lyapunov-Schmidt method is a well known and widely used
technique for dimension reduction and bifurcation analysis near a
zero eigenvalue [Golubitsky and Schaeffer, 1984; Balakotaiah et
al., 1985]. However, only recently Balakotaiah and Chang [2003]
showed that this method is also an excellent spatial averaging tech-
nique. Some examples of spatial averaging using the L-S method
were presented by Balakotaiah and Chang [2003] and Chakraborty
and Balakotaiah [2002] and Balakotaiah and Chakraborty [2003].
We review here the methodology of the L-S procedure briefly (and
in a more general form) and refer the reader for further details to
the cited references.

We consider a nonlinear partial differential equation of the form

(1)

where c(x, y, z, t) is a concentration variable dependent on the local
coordinates (x, y) as well as other independent variables z and t, ∇2

is the diffusion (Laplacian) operator in the local coordinates x and
y in a region Ω subject to either zero flux or periodic boundary con-
ditions on the boundary ∂Ω. The parameter p is assumed to be small
and is the ratio of local diffusion time to (global scale) convection
time. f is a non-linear operator that accounts for large scale mixing
(diffusion) and convection effects as well as the source/sink terms
due to reaction, adsorption, etc. It is assumed that f has a Taylor se-
ries expansion in terms of p and the parameters p* appearing in f are
of order unity.

We note that the diffusion operator with Neumann boundary con-
ditions is symmetric and has a simple zero eigenvalue with a con-
stant eigenfunction. Equivalently, the eigenvalue problem

(2)

(3)

is self-adjoint (L*=adjoint operator=L) with a zero eigenvalue µ0=0
and a constant eigenfunction ψ0(x, y)=1. Moreover, for j≥1, µj>0
and for all j≥0, the eigenfunctions ψj(x, y) can be chosen to satisfy
the orthogonality condition

(4)

As shown below, these properties can be used to eliminate the spa-

Averaging Eq. (1) over the domain Ω and use of divergence the
orem gives

(5)

For obvious reasons, we shall refer to Eq. (5) as the averaged model.
To write it in a more useful form, we express c as

(6)

where

is the spatially averaged concentration (over the domain Ω). It fol-
lows from Eq. (6) that

(7)

For obvious reasons, c'(x, y, z, t) will be referred to as the local var-
iation. The Lyapunov-Schmidt procedure uses orthogonal com
mentary spaces in the domain to split c as given by Eq. (6). S
larly, in the codomain, Eq. (1) is satisfied iff

(8)

(9)

where E is the projection operator onto range L. The complemen-
tary projection (onto ker L) is given by

(10)

Then, Eq. (9) is identical to Eq. (5), which may be written as

(11)

Simplification of Eq. (8) gives

(12)

We refer to this as the local equation. Since L : range L�range L
is invertible, it follows from the implicit function theorem that th
local equation (Eq. (12)) with the constraint given by Eq. (7) c
be solved uniquely for c' in terms of . Substitution of this in E
(11) gives the reduced or averaged model.

The local equation may be solved perturbatively for c'. Writing

(13)

we get

(14)

(15)

etc. Taylor series expansion of Eq. (11) gives

F c p,( ) ∇2c − pf x y z t c p p*, , , , , ,( )  = 0,≡

Lψ ∇2ψ = − µψ in Ω,≡

∇ψ n = 0 on ∂Ω⋅

ψi ψ j,〈 〉 = 
1

AΩ
------ ψiψjdxdy = δi j  = 

0 i j≠,
1 i = j.,




Ω∫∫

f x y z t c p p*, , , , , ,( ) ψ0,〈 〉 = 0.

c x y z t, , ,( ) = c〈 〉 z t,( )ψ0 + c' x y z t, , ,( ),

c〈 〉 = 
1

AΩ
------ c x y z t, , ,( )dxdy = c ψ0,〈 〉

Ω∫∫

c'〈 〉 = c' ψ0,〈 〉  = 0.

EF c〈 〉ψ0 + c'( ) = 0,

I  − E( )F c〈 〉ψ0 + c'( )  = 0,

I  − E( )F = F ψ0,〈 〉ψ0.

f x y z t c〈 〉ψ0 + c' p p*, , , , , ,( ) ψ0,〈 〉 = 0.

Lc'= pf x y z t c〈 〉ψ0 + c' p p*, , , , , ,( )
− p f x y z t c〈 〉ψ0 + c' p p*, , , , , ,( ) ψ0,〈 〉ψ0.

c〈 〉

c'= pici,
i = 1

∞

∑

Lc1= f c〈 〉ψ0 0 p*, ,( ) − f c〈 〉ψ0 0 p*, ,( ) ψ0,〈 〉ψ0; c1〈 〉  = 0,

Lc2 = Dcf c〈 〉ψ0 0 p*, ,( ) c1+ Dpf⋅ c〈 〉ψ0 0 p*, ,( )
− Dcf c〈 〉ψ0 0 p*, ,( ) c1− Dpf c〈 〉ψ0 0 p*, ,( ) ψ0,⋅〈 〉ψ0

= 0; c2〈 〉  = 0,

f c〈 〉ψ0 0 p*, ,( ) ψ0,〈 〉 + Dcf c〈 〉ψ0 0 p*, ,( ) c'⋅ ψ0,〈 〉

+ p Dpf c〈 〉ψ0 0 p*, ,( ) ψ0,〈 〉 + 
1
2!
----- Dcc

2 f c〈 〉 ψ0 0 p*, , ,( ) c' c',( ) ψ0,⋅〈 〉

+ p Dcp
2 f c〈 〉ψ0 0 p*, ,( ) c'⋅ ψ0,〈 〉 + 

1
2!
-----p2 Dpp

2 f c〈 〉ψ0 0 p*, ,( ) ψ0,〈 〉 + … = 0








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tial degrees of freedom in Eq. (1). (16)
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320 V. Balakotaiah

[For simplicity of notation, we have written f(x, y, z, t, ψ0, 0, p*)
as f( ψ0, 0, p*).] Thus, the averaged model to order p2 is given
by

(17)

Here, Dcf, Dpf, D
2
ccf, D

2
cpf are the Fréchet derivatives of the non-

linear operator f and D
2
ccf·(ci, cj), is a symmetric multilinear form.

The following observations may be made from the form of the
averaged model given by Eq. (17): (i) The (zeroth order) first term
is the averaged model to the lowest order and can be obtained by
setting c'=0 and p=0 in Eq. (11); (ii) The second and third terms
represent the order p corrections. The second term arises due to elim-
ination of local spatial degrees of freedom. In physical terms, this
is the combined effect of the interaction of local diffusion and con-
vection/reaction. We shall refer it as the Taylor dispersion term. The
third term is due to order p effect that is already present in the func-
tion f of the original model (We shall refer it to as the Aris correc-
tion term.). (iii) If the Taylor expansion of f in powers of p has terms
up to order pq (q≥0), then the averaged model has to be derived to
order pq so that all the physical phenomena present in the original
detailed model are also represented in the averaged model. If this
is not the case, then some of the physical phenomena represented
in the original model are not important and can be ignored; (iv) when
Eq. (17) is truncated at order pq (q≥1), the truncation error arises
from two sources, the first being the truncation of the Taylor series
of the averaged Eq. (11), the second being the truncation error of
the perturbation expansion Eq. (13) of the local equation. As we
show in the following sections, the first truncation error may be zero
in some practical cases (e.g. linear kinetics, wall reaction case, or
solutal dispersion problems in which f is linear in c) and the aver-
aged equation may be closed exactly, i.e., higher order Fréchet de-
rivatives are zero and the Taylor expansion of f terminates at some
finite order (usually after the linear and quadratic terms in most ap-
plications). In such cases, the only error is due to the truncation of
the solution of the local equation.

While it is always possible to obtain a single averaged equation
in terms of  to any order in p, this may not be useful or what is
desired in applications. For example, in chemical reactors or chro-
matographs, it is not the spatially averaged concentration ( ) that
is measured experimentally but the so called “cup-mixing” or veloc-
ity weighted concentration defined by

(18)

where g(x, y) (with = =1) is the local velocity profile. The
relationship between cm and  may be obtained from Eq. (6) as

(19)

Now, the averaged model is defined in terms of cm and  by the
global Eq. (11) and the local Eq. (19), with c' defined by Eq. (13).
This form of the reduced model, expressed in terms of two con-

centration variables will be referred to as the “two-mode model,”
and is convenient for physical interpretation of various limiting ca
as well as to extend the range of validity by a procedure called reg-
ularization.

The above averaging procedure described for Neumann bo
ary conditions may be extended to Robin boundary conditions

(20)

where Da is a (reactor scale) Damköhler number (which is of
der unity) and rw(c) is some nonlinear function describing reactio
or adsorption at the wall. When p�0, the local gradients vanish
and the leading order operator remains the same. Thus, the 
ting given by Eq. (6) is again valid. However, for this case, the a
aged equation as well as the local equation may contain extra t
that appear due to the inhomogeneous boundary condition a
wall.

A HYPERBOLIC AVERAGED MODEL
FOR DISPERSION IN CAPILLARIES

As our first example, we consider the classical Taylor-Aris pro
lem that illustrates dispersion due to transverse velocity gradi
and molecular diffusion and show that the inconsistencies ass
ated with the parabolic form of the reduced model can be remo
by expressing the reduced model in a hyperbolic form. We also
alyze the averaged hyperbolic model and show that it has a m
larger range of validity than the standard parabolic model with Dan
werts’ boundary conditions.

The dispersion of a non-reactive solute in a circular tube of c
stant cross-section in which the flow is laminar is described by
convective-diffusion equation

(21a)

with the following boundary and initial conditions:

(21b)

I.C : C(x, r, 0)=f(x, r) (21c)
B.C : C(0, r, t')=g(r, t') (21d)

Here,  is the average velocity in the pipe, a is the radius andm

is the molecular diffusivity of the species. Defining dimensionle
variables

(22)

we can write Eq. (21a & b) as

(23)

Here, p is the local (transverse) Peclet number, which is the rat
transverse diffusion time to the convection time. Per is the radial
Peclet number (ratio of transverse diffusion time to a convec
time based on pipe radius). We assume that p<<1 while Per is of or-
der unity. The parameter Per

2/p= L/Dm is also known as the axia

c〈 〉
c〈 〉

f c〈 〉ψ0 0 p*, ,( ) ψ0,〈 〉  + p Dcf c〈 〉ψ0 0 p*, ,( ) c1⋅ ψ0,〈 〉

+ p Dpf c〈 〉ψ0 0 p*, ,( ) ψ0,〈 〉  + 
p2

2!
----- Dcc

2 f c〈 〉ψ0 0 p*, ,( ) c1 c1,( ) ψ0,⋅〈 〉

+ p2 Dcp
2 f c〈 〉ψ0 0 p*, ,( ) c1⋅ ψ0,〈 〉  + p2 Dcf c〈 〉ψ0 0 p*, ,( ) c2⋅ ψ0,〈 〉

+  
1
2!
-----p2 Dpp

2 f c〈 〉ψ0 0 p*, ,( ) ψ0,〈 〉  + …= 0











c〈 〉

c〈 〉

cm = c x y z t, , ,( )g x y,( ) ψ0,〈 〉,

g〈 〉 g ψ0,〈 〉
c〈 〉

cm z t,( ) = c〈 〉 z t,( ) + g x y,( )c' ψ0,〈 〉.

c〈 〉

∇c n  + pDarw c( )  = 0 on ∂Ω,⋅

∂C
∂t'
-------+ 2u 1− 

r2

a2
---- 

 ∂C
∂x
-------  = 

Dm

r
------ ∂

∂r
----- r

∂C
∂r
------- 

  + Cm

∂2C
∂x2
--------; 0 r a< < x 0> t' 0>, ,

∂C
∂r
-------  = 0@r = 0 a,

u

z = 
x
L
--- t  = 

ut'
L
------ ξ  = 

r
a
-- p = 

a2u
LDm

---------- Per  = 
au
Dm

------

LC
1
ξ
--- ∂

∂ξ
------ ξ∂C

∂ξ
------- 

 
 = p

∂C
∂t
------- + 2 1− ξ2( )∂C

∂z
-------  − 

p

Per
2

-------∂
2C

∂z2
-------- ;≡

∂C
∂ξ
------- = 0@ξ  =  0 1,

u

March, 2004
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Peclet number. Also note that for any finite Per or tube diameter,
the axial Peclet number goes to infinity as p goes to zero. In physical
terms, the conditions p�1 and Per is of order unity imply that the
transverse diffusion time (tD=a2/Dm) is much smaller compared to
the convection time (tc=L/ ) and the axial diffusion time (tz=L

2
/Dm).

When such scale separation exists, we can average the governing
equation over the transverse length scale using the L-S technique
and obtain averaged model in terms of axial length and time scales.

We note that the transverse operator L is symmetric with respect
to the inner product 

It has a zero eigenvalue with normalized eigenfunction of unity.
We define the mixing-cup (velocity weighted) and spatial average
concentrations by

(24a)

(24b)

Transverse averaging of Eq. (23) gives

(25)

We note that when p=0, =Cm and substitution of this into Eq.
(25) gives the leading (or zeroth) order evolution equation for the
averaged concentration:

(26)

To obtain the averaged equation to order p, we write

C'∈ker L (27)

and solve for the slave variable C'(ξ, z, t) in terms of (z, t) us-
ing the procedure outlined above. To leading order, we have

(28)

Substitution of this in Eq. (27) and transverse averaging (after mul-
tiplying by the velocity profile) gives the local equation relating Cm

and :

(29)

This local equation, when written in dimensional form, defines a char-
acteristic transfer time between the slowly evolving mode Cm and the
slave mode Cm− . Thus, the averaged model to order p is given
by

(30a)

(30b)

We can combine these two equations to obtain a single equation
either for Cm or . In this specific example, the model is linear in
the concentration and hence both Cm and  satisfy the same equa-

which is often measured in experiments, is more relevant in ap
cations, we write the reduced model in terms of Cm:

(31)

We note that this averaged model is hyperbolic. The third term
Eq. (31) represents the Taylor dispersion term, due to velocity 
dients and transverse molecular diffusion, while the last term is
Aris correction term, representing the influence of axial molecu
diffusion. In dimensional form, the reduced model may be writ
as

(32)

where the local diffusion or mixing time is defined by

(33)

The corresponding local length scale is given by λD= tD while
the diffusivity may be written as Deff=

2tD. We note that axial mo-
lecular diffusion can be neglected when Per

2>>48. In such cases, Eq
(32) simplifies to

(34)

In his famous paper, Taylor [1953] used the leading order appr
mation

to express the mixed derivative term as a dispersion term and
(34) as

(35)

In the literature, Deff is also known as the Taylor dispersion coef
cient. However, the approximation used by Taylor transforms a
perbolic equation into a parabolic equation. In the chemical en
neering literature, this approximation is made worse by the fur
requirement of an artificial boundary condition at the exit of t
tube. During the past fifty years, the parabolic model with Dan
werts’ boundary conditions is used extensively to describe dis
sion effects in chromatographs and reactors. We show here tha
hyperbolic form of the model is more accurate, retains the pro
physics, can describe dispersion effects more accurately than
parabolic model and is valid in a much larger domain of the ph
ical parameter space. A good analogy between the parabolic
hyperbolic models is the approximation of the function e−x for small
x by fp(x)=1−x and fh(x)=1/(1+x). Both approximations have the
same accuracy for x�0 but the first approximation breaks dow
qualitatively for x>1 while the second approximation is valid qua
itatively for all x. The second (Pade) approximation is a regu
ized version of the first function. This regularization is closely co
nected with how we write the local equation. Though the local eq
tion is an infinite series in powers of p, we can truncate it (often
the first term) and rewrite it so that it is qualitatively valid for a

u

v w,( ) = 2ξv ξ( )w ξ( )dξ
0

1∫

Cm = 4ξ 1− ξ2( )C ξ z t, ,( )dξ
0

1

∫
C〈 〉  = 2ξC ξ z t, ,( )dξ

0

1

∫

∂ C〈 〉
∂t

----------- + 
∂Cm

∂z
--------- − 

p

Per
2

-------∂
2 C〈 〉
∂z2

------------- = 0

C〈 〉

∂ C〈 〉
∂t

----------- + 
∂ C〈 〉

∂z
----------- = 0

C ξ z t, ,( )  = C〈 〉 z t,( )  + C' ξ z t, ,( );

C〈 〉

C' ξ z t, ,( ) = − p
∂ C〈 〉

∂z
----------- 1

12
------  − 

ξ2

4
---- + 

ξ4

8
----  + O p2( )

C〈 〉

Cm − C〈 〉  = − 
p
48
------∂ C〈 〉

∂z
-----------  + O p2( ) = − 

p
48
------

∂Cm

∂z
---------  + O p2( )

C〈 〉

∂ C〈 〉
∂t

----------- + 
∂Cm

∂z
--------- − 

p

Per
2

-------∂
2 C〈 〉
∂z2

------------- = 0

Cm − C〈 〉  = − 
p
48
------∂ C〈 〉

∂z
-----------

C〈 〉
C〈 〉

∂Cm

∂t
--------- + 

∂Cm

∂z
---------  + 

p
48
------∂

2Cm

∂z∂t
----------- − 

p

Per
2

-------∂
2Cm

∂z2
-----------  + O p2( )  = 0

∂Cm

∂t'
--------- + u〈 〉∂Cm

∂x
--------- + u〈 〉tD

∂2Cm

∂x∂t'
------------  − Dm

∂2Cm

∂x2
----------- = 0; t'    tD x    λD,,>> >>

tD = 
a2

48Dm

------------

u〈 〉
u〈 〉

∂Cm

∂t'
--------- + u〈 〉∂Cm

∂x
--------- + u〈 〉tD

∂2Cm

∂x∂t'
------------  = 0

∂Cm

∂t'
--------- = − u〈 〉∂Cm

∂x
---------

∂Cm

∂t'
--------- + u〈 〉∂Cm

∂x
--------- = Deff

∂2Cm

∂x2
-----------; Deff = u〈 〉2tD
Korean J. Chem. Eng.(Vol. 21, No. 2)

tion, as they are linearly related. Since the cup-mixing concentration,values of p.
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When the Taylor approximation is used in Eq. (32) the averaged
model is again parabolic but now the effective dispersion coeffi-
cient is given by

This result was first derived by Aris [1956] using the method of
moments. While the resulting model now includes both the effects
(axial molecular diffusion and dispersion caused by transverse veloc-
ity gradients and molecular diffusion) it has the same deficiency as
the Taylor model, i.e. converting a hyperbolic model into a para-
bolic one.

We note that when Dm<< 2tD, or equivalently, the radial Peclet
number Per>>6.93, axial diffusion can be neglected. The local Peclet
number p, which is equal to Per times the aspect ratio (a/L), can be
small even when Per>>6.93 provided the aspect ratio is sufficiently
small. Thus, the conditions Per>>6.93 and p<<1 are usually satisfied
in most tubular reactors or chromatographic columns. In such cases,
it is more appropriate to use the leading order approximation to mod-
ify the small axial dispersion term to a mixed derivative term and
write the averaged model as

(36)

Now, the averaged hyperbolic model, Eq. (36) defines a charac-
teristic initial value problem (Cauchy problem). To complete the
model, we need to specify Cm only along the characteristic curves
x'=0 and t'=0. Thus, the initial and boundary conditions for the aver-
aged model are obtained by taking the mixing-cup averages of Eq.
(21c) and (21d):

(37a)

(37b)

When the assumption Per>>6.93 is not valid, it is better to leave the
averaged model in the more general hyperbolic form given by Eq.
(31) or (32) with boundary and initial conditions given by Eq. (37).
The important point to be made is the hyperbolic forms of the aver-
aged model, either Eq. (32) or Eq. (36), have much larger domain
of validity than the parabolic form as shown below.

The L-S method can be used to derive the averaged model to
higher orders in p but we will not be pursue it here. In fact, since our
averaged model at order p is also regularized, as explained earlier,
higher order approximations are not necessary to see the qualita-
tive behavior for all positive values of p.
Comparison of Solutions of Parabolic and Hyperbolic Mod-
els

We now present the solution of the hyperbolic model defined by
Eqs. (36) and (37) and compare the solution to that of the classical
parabolic model with Danckwerts boundary conditions. We use the
axial length and convective time scales to non-dimensionalize the
variables and write the hyperbolic model in the following form:

(38a)

Cm(z, t=0)=f(z) (38b)
Cm(z=0, t)=g(t) (38c)

where P is now the effective local Peclet number defined by

and is the ratio of effective transverse diffusion time to the conv
tion time. Hereafter, we shall refer to the parameter Λ as the dimen-
sionless dispersion coefficient (The dimensional dispersion coeffic
is Deff=

2 ).
The exit concentration Cm(z=1, t) for the case of a unit impulse

(Delta function) input (f(z)=0, g(t)=δ(t)) is known as the disper-
sion, or residence time distribution, curve. For the hyperbolic m
el, this can be found either by Laplace transformation or from 
general solution of the model (see Balakotaiah and Chang, 2
for a general analytical solution of Eqs. (38)). It is easily seen 
the Laplace transform of the dispersion curve is given by

(39)

while the dispersion curve is given by

(40)

We note that the second central moment (or the dimensionless
iance) of the dispersion curve is given by

σ 2=2P (41)

Thus, for P�0, the variance approaches zero and the behavior
proaches that of plug flow. For P small, Eq. (40) may be simplif
to

(42)

Deff = u〈 〉2tD + Dm = 
a2 u〈 〉2

48Dm

------------- + Dm

u〈 〉

∂Cm

∂t'
--------- + u〈 〉∂Cm

∂x
---------  + u〈 〉tD

∂2Cm

∂x∂t'
------------  = 0; tD = tD + 

Dm

u〈 〉2
--------- = 

a2

48Dm

------------  + 
Dm

u〈 〉2
---------

Cm x t'= 0,( ) = 4ξ 1− ξ2( )f x Rξ,( )dξ
0

1

∫ fm x( )≡

Cm x = 0 t',( ) = 4ξ 1− ξ2( )g Rξ t',( )dξ
0

1

∫ gm t'( )≡

∂Cm

∂t
--------- + 

∂Cm

∂z
--------- + P

∂2Cm

∂z∂t
----------- = 0; t    P z    P,>> >>

P = 
u〈 〉tD

L
-----------  = 

a2 u〈 〉
48LDm

---------------- + 
Dm

u〈 〉L
-----------  = p

1
48
------  + 

1

Per
2

------- pΛ≡

u〈 〉 tD

E s( ) = Exp − 
s

1+ sP
-------------

 
 
 

Eh t( ) = Cm 1 t,( ) = Exp − 
1+ t( )
P

------------- 
  δ t( ) + 

1

P t
--------I1

2 t
P

-------- 
 

Eh t( ) 1

4πPt3 2⁄
--------------------Exp − 

1− t( )2

P
------------------

 
 
 

≈

Fig. 1. Dispersion curves predicted by the hyperbolic model, Eq.
(38) for various values of the effective local Peclet number,
P.
March, 2004
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Hence, the dispersion curve has a peak at t=1 and is slightly asym-
metrical (but the deviation from the Gaussian curve is small). As P
increases to 0.5, it can be shown by analyzing Eq. (40) that the peak
moves to t=0 and for any P>0.5, the peak remains at t=0. For any
P>0.5, the dispersion curve has a slow decaying (long) tail and the
variance can exceed unity. Fig. 1 shows the dispersion curves for
different values of P. For simplicity, the delta function of magni-
tude Exp(−1/P) at t=0 is not shown in the figure.

We now compare the solution of the hyperbolic model with that
of the parabolic model used widely in the literature to describe dis-
persion in chromatographs and reactors. The parabolic model with
Danckwerts boundary conditions, in dimensionless form, is given by

(43a)

(43b)

(43c)

C(z, t=0)=f(z) (43d)

where Pe is the axial Peclet number. For the parabolic model with
f(z)=0 and g(t)=δ(t), the dispersion curve is given by

(44)

where

The dimensionless variance can be found more easily from the La-
place transform and is given by 

(45)

We note that the variance for the parabolic model is always bound-
ed between zero (for Pe�∞ or plug flow) and unity (Pe�0 or
ideal CSTR behavior). Thus, the parabolic model can only describe
dispersion behavior that lies between these two extremes. In con-
trast, the hyperbolic model can describe the same behavior when P
varies between 0 and 0.5 as well as the bypassing, stagnant region
or solute retaining behavior (with long tails as in segregated lami-
nar flow) when P>0.5. For very small P, the dispersion curves pre-
dicted by the two models are very close to each other but the hy-
perbolic model predicts an asymmetric curve with a slightly higher
peak than the parabolic model. In addition, the parabolic model pre-
dicts upstream diffusion and infinite propagation speed. Both these
non-physical phenomena are not present in the hyperbolic model
which retains the qualitative behavior of the full model for all val-
ues of P. Thus, we conclude that the hyperbolic model describes
dispersion effects better than the parabolic model and is valid over
a wider range of the physical parameter space.

Before we close this section, we also present solutions of the full

(46)

for the case of a unit impulse input. The Laplace transform of 
dispersion curve is now given by

(47)

from which we can obtain the second central moment (varian
as

(48)

This shows again that when λ is small (or equivalently, Per>>1), we
can combine the small axial dispersion term with the mixed de
ative term and simplify the general hyperbolic model Eq. (46)
the simpler model Eq. (38a). However, for λ values of order unity
or larger, this cannot be justified. The inverse transform of Eq. (
can be found by integrating around the branch points but we 
not pursue it here. Instead, we show in Figs. 2 and 3 the num
cally determined (using Matlab) dispersion curves for P=0.1, 1 
various values of λ. As can be expected, for small λ values, the qual-
itative behavior of the full hyperbolic model Eq. (46) is similar 
that of the simpler case of λ=0. Only for λ≥1, the peak value change
and shifts to lower times.

HYPERBOLIC AVERAGED MODELS FOR DESCRIBING
DISPERSION EFFECTS IN CHROMATOGRAPHS

We now extend the averaging method to derive hyperbolic m
els to describe dispersion effects in chromatographs. We conside

∂C
∂t
------- + 

∂C
∂z
-------  = 

1
Pe
------∂

2C

∂z2
--------; 0 z 1< < t 0>,

1
Pe
------∂C

∂z
------- − C = g t( ) @z = 0

∂C
∂z
------- = 0 @z = 1

Ep t( )  = C z = 1 t,( ) = 
2
Pe
------ Exp

Pe
2
------  − 

Pe2
 + 4λn

4Pe
---------------------t

 
 
 

n = 1

∞

∑

λnsin λn Pe2
 + 4λn( )

Pe2
 + 4Pe + 4λn( )

--------------------------------------------------,

cot λn = 
λn

Pe
--------  − 

Pe

4 λn

------------; n = 1 2 …,,

σ2
 = 

2
Pe
------  − 

2

Pe2
------- 1− e

− Pe( )

∂Cm

∂t
--------- + 

∂Cm

∂z
--------- + P

∂2Cm

∂z∂t
-----------  − λP

∂2Cm

∂z2
-----------  = 0; λ = 

48

Per
2

-------

E s( ) = Exp
1+ sP − s2P2

 + 2sP 1+ 2λ( ) + 1
2Pλ

-----------------------------------------------------------------------
 
 
 

σ2
 = 2P; P = P 1+ λ( )

Fig. 2. Dispersion curves predicted by the full hyperbolic model,
Korean J. Chem. Eng.(Vol. 21, No. 2)

hyperbolic model Eq. (46) for P=0.1.
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case of a single solute being adsorbed on the wall of a tube in which
the flow is laminar. Assuming Langmuir adsorption and neglecting
axial molecular diffusion (Per>>1), the governing partial differential
equations (assuming azimuthal symmetry) may be written as

(49)

(50)

(51)

(52)

with appropriate inlet and initial conditions. Here, ka and kd are the
adsorption and desorption rate constants and CAw is the solute con-
centration at the wall and the other symbols have their usual mean-
ing. Scaling the solute concentration using some reference inlet con-
centration (CA0), adsorbed concentration by the total concentration
of sites C0(θ=CAs/C0), time, radial and axial coordinates as in the
Taylor problem (using convection time, tube radius and length, re-
spectively) and defining dimensionless parameters

(53)

the dimensionless model equations may be written as

(54)

(55)

(56)

(57)

with initial and inlet conditions

C(ξ, z, t=0)=C0(ξ, z) (58a)

θ(z, t=0)=θ0(z) (58b)

C(ξ, z=0, t)=Cin(ξ, t) (59)

Here, C(ξ, z, t) is the scaled solute concentration in the fluid pha
Cw is the solute concentration at the wall, θ is the normalized ad-
sorbed concentration (0≤θ≤1), K is the adsorption equilibrium con-
stant, p is the transverse Peclet number, Γ represents the adsorption
capacity (ratio of adsorption sites per unit tube volume to the 
erence solute concentration) and Dal is the local Damköhler num-
ber (ratio of transverse diffusion time to the characteristic adso
tion time). We shall assume that p<<1 while Γ and Dal are order one
parameters (In physical terms, this implies that transverse mol
lar diffusion and adsorption processes are much faster compar
the convection).

Transverse averaging of the above model using the proce
outlined in section 2 gives the following averaged model to orde

(60)

(61)

(62)

(63)

(64)

The averaged model is defined in terms of four variables (or f
modes), namely, the fluid phase cup-mixing concentration (Cm), the
fluid phase average concentration ( ), the solute concentratio
the wall (Cw) and the adsorbed concentration (θ). Since the initial
and boundary conditions for the averaged model are obtaine
the same manner as the Taylor problem by taking transverse 
ages of Eqs. (58a) and (59), we do not consider them any fur
We now consider various limiting cases of this model.

For the case of p=0, which corresponds to adsorption, des
tion and transverse diffusion time scales going to zero, we have

(65a)

and the above model reduces to the widely used zeroth orde
perbolic model (with no dispersion) [Rhee et al., 1986]:

(65b)

The first non-trivial case we consider is that of linear adsorpt

∂CA

∂t'
---------  + 2u 1− 

r2

a2
---- 

 ∂CA

∂x
---------  = 

Dm

r
------ ∂

∂r
----- r

∂CA

∂r
--------- 

 ; 0 r a< < x 0>,

− Dm

∂CA

∂r
--------- r = a z t, ,( ) = kaCAwCs − kdCAs;

∂CA

∂r
--------- r  = 0 z t, ,( ) = 0

∂CAs

∂t'
---------- = kaCAwCs − kdCAs

CAw = CA r  = a z t, ,( ); Cs + CAs = C0

Γ = 
2
a
--- C0

CA0

------- K  = 
kaCA0

kd

------------ Dal  = 
a2kaCA0

Dm

-----------------,

LC
1
ξ
--- ∂

∂ξ
------ ξ∂C

∂ξ
------- 

 
 = p

∂C
∂t
-------  + 2 1− ξ2( )∂C

∂z
-------≡

∂C------- = 0 @ξ = 0

1
Dal

--------∂C
∂ξ
------- ξ = 1 z t, ,( ) = − 

Γ
2
--- Cw 1− θ( )  − 

θ
K
---- ; Cw = C ξ = 1 z t, ,( )

Γ
Dal

--------∂θ
∂t
------  = Cw 1− θ( ) − 

θ
K
----

∂ C〈 〉
∂t

-----------  + 
∂Cm

∂z
--------- + Γ∂θ

∂t
------ = 0

p
∂θ
∂t
------  = Dal Cw 1− θ( ) − 

θ
K
----

Cw − C〈 〉  = 
p
8
---∂ C〈 〉

∂t
----------- + 

p
6
---∂ C〈 〉

∂z
-----------

Cm − C〈 〉  = − 
p
24
------∂ C〈 〉

∂t
-----------  − 

p
16
------∂ C〈 〉

∂z
-----------

C〈 〉 z t = 0,( )  = C0 ξ z,( )〈 〉; θ z t = 0,( )  = θ0 z( );
Cm z = 0 t,( ) = Cm in, t( )

C〈 〉

Cm = Cw = C〈 〉; θ  = 
K C〈 〉

1+ K C〈 〉
--------------------

∂ C〈 〉
∂t

-----------  + 
∂ C〈 〉
∂z

----------- + Γ∂θ
∂t
------  = 0

Fig. 3. Dispersion curves predicted by the full hyperbolic model,
Eq. (46) for P=1.
March, 2004

and desorption. For this case, we have θ<<1 and the model becomes∂ξ
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linear. For small p, we can use the leading order approximation to
further simplify the model by eliminating the variables Cw and 
and write it in terms of Cm:

(66a)

(66b)

(66c)

Since the model is linear for the special case considered, the same
equation is also satisfied by the other three variables. The follow-
ing observations may be made from Eq. (66b) that expresses the
dimensionless dispersion coefficient Λ: (i) the first term describes
dispersion effects due to velocity gradients when adsorption equi-
librium exists at the interface. We note that this expression was first
derived by Golay [1958] for capillary chromatography with a reten-
tive layer. (ii) The second term corresponds to dispersion effects
due to finite rate of adsorption, since this term vanishes if we as-
sume that adsorption and desorption are very fast so that equilib-
rium exists at the interface. (iii) the effective dispersion coefficient
reduces to the Taylor limit when the adsorption rate constant or the
adsorption capacity is zero. (iv) As is well known [Rhee et al., 1986],
the effective solute velocity is reduced by a factor (1+γ). (v) For
the case of irreversible adsorption (γ�∞ and Dal�∞), the disper-
sion coefficient is equal to eleven times the Taylor value. It is also
equal to the reciprocal of the asymptotic Sherwood number for mass
transfer in a circular channel with constant wall flux boundary con-
dition. (vi) When the local Damkohler number is small (adsorption
is slow or capacity is low), Λ can be large, leading to long tails in
the dispersion curve.

The second limiting case we consider is that of Langmuir ad-
sorption with equilibrium at the interface. In physical terms, this
corresponds to adsorption and desorption being very fast compared
to transverse diffusion and convection. This assumption is equiva-
lent to assuming Dal�∞ and replacing Eq. (61) by

(67)

Combining Eqs. (62) and (63), we get

(68)

Thus, we can obtain the following single evolution equation for the
cup-mixing concentration:

(69)

This equation reduces to the zeroth order hyperbolic model (Eq.
(65)) for p=0. It also reduces to the hyperbolic model treated in the
previous section for either Γ=0 or K=0, after combining of the third
and fourth terms using the leading order approximation. For finite

ent from the intuitively written models in the literature!
The last case we consider is that of a flat velocity profile w

Langmuir adsorption. In this case, the dimensionless model e
tions are given by

(70)

(71)

(72)

(73)

Now, because of flat velocity profile, the distinction between cu
mixing and averaged concentrations disappears and the ave
model to order p may be expressed in terms of only three varia
(three-mode form) as

(74)

(75)

(76)

For the special case of linear adsorption, we can combine these 
tions into a single hyperbolic equation

(77a)

(77b)

Comparing Eqs. (66) and (77), we see that the adsorption ind
dispersion is independent of the velocity profile. We also note t
for the case of flat velocity profile, there is no dispersion when γ=0.
When equilibrium is assumed at the wall, we can eliminate θ and
Cw and write the averaged equation as

(78)

As expected, for p=0, this model reduces again to the zeroth o
hyperbolic model, Eq. (65) but for any finite p, it does not simpl
to any of the standard models in the literature.

The order p terms that appear in Eqs. (69) and (78) modify
leading order hyperbolic behavior by introducing dispersion (wh
is always present in real systems due to velocity gradients an
finite rates of adsorption). As is well known in the literature, t
leading order hyperbolic models may have discontinuous solu
profiles [Rhee et al., 1986]. As stated in the introduction, in the
erature, these models are often modified by adding a dispersion
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p, Γ and K, this rigorously derived averaged model is quite differ- and transforming them to a parabolic form. The above analysis shows
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that the parabolic form of the reduced model is not only a poor ap-
proximation but also cannot be justified based on physical grounds
(and rigorous derivation). The Lyapunov-Schmidt method of aver-
aging modifies the zeroth order hyperbolic models by adding order
p corrections and gives the averaged models in multi-mode form.
In some special cases (e.g., linear adsorption or equilibrium at the
wall) it is possible to transform them to a single hyperbolic equa-
tion containing the dispersion effects. When this simplification is
not possible, it is best to leave the averaged models in multi-mode
form, which is more convenient for numerical solution.

HYPERBOLIC MODELS FOR DESCRIBING
DISPERSION EFFECTS IN CHEMICAL REACTORS

In this section, we present hyperbolic low-dimensional averaged
models for tubular homogeneous and catalytic reactors. Again, we
skip algebraic details and focus on the results and their physical inter-
pretation.
1. Homogeneous Tubular Reactors

As our third example, we consider the problem of fully devel-
oped laminar flow in a tube with a single homogenous reaction A�

B. For a constant density system, assuming azimuthal symmetry,
the scaled concentration c(ξ, z, t) of species A obeys the convec-
tion-diffusion-reaction equation:

(79)

where Da is the reactor scale Damköhler number defined by

(80)

and other parameters have their usual meaning. Here, CR is some
reference concentration which may be taken as the inlet concentra-
tion. As in the previous problems, we assume that p<<1 while Da
and Per are order one parameters. The boundary and initial condi-
tions on the model are given by

(81a)

(81b)

(81c)

(81d)

Transverse averaging of the above model using the procedure out-
lined in section 2 gives the following two-mode model, involving
the spatially averaged concentration  and the mixing-cup con-
centration cm to order p:

(82)

(83)

with boundary and initial conditions given by

(84a)

(84b)

(84c)

We now consider some important limiting cases of this model. F
we note that for p=0, =cm and the model reduces to the zero
order hyperbolic (plug flow) model. When axial molecular diffu
sion is negligible, it reduces to the hyperbolic model:

(85a)

(85b)

cm=cm, in(t) @ z=0; cm=cm0(z), @ t=0, (86)

where Λ1(=1/48) is now the dimensionless (local) mixing time. U
der steady-state conditions, this two-mode model can be further 
plified to

(87a)

(87b)

which in dimensional form may be written as

(88a)

(88b)

where tmix=Λ1(a
2/Dm) is the local mixing time. The solutions of the

two-mode model given by Eq. (87) should be compared to the 
abolic axial dispersion model with Danckwerts boundary con
tions [Danckwerts,1953; Wehner and Wilhelm, 1973]:

(89a)

(89b)

As in the Taylor problem, the exit concentration predicted by 
Danckwerts model is always bounded between the two limiting c
of plug flow (Pe=∞) and CSTR (Pe=0). This is not the case f
the two-mode defined by Eqs. (87). While for p�0 the solution
approaches the plug flow limit, as p increases the conversions
be below those obtained in a CSTR. This is the so-called mix
limited asymptote which is similar to the mass transfer control
case for the case of catalytic reactions. The single mode Dan
erts model cannot describe (even qualitatively) this mixing- or mic
mixing-limited regime. Thus, we have shown that the hyperbo
two-mode model has a much larger region of validity than the p
abolic model with Danckwerts boundary conditions.
2. Tubular Catalytic Reactors

The last case we consider is that of a single wall-catalyzed r
tion A�B in a laminar flow tubular reactor (e.g., a catalytic mon
lith). The governing convection-diffusion-reaction (CDR) equatio
for species A is now given by

(90)
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---------- + Dar c〈 〉( )  + O p2( ) = 0,

c〈 〉  − cm = 
p
48
------

∂cm

∂z
-------- + O p2( )

p
2

-------
∂cm

∂z
-------- = cm − cm i, n t( ), @z = 0,

∂cm

∂z
--------  = 0, @z = 1,

cm = cm0 z( ), @t = 0.

c〈 〉

∂cm

∂t
--------  + 

∂cm

∂z
--------  + Λ1p

∂2cm

∂z∂t
----------  + Dar c〈 〉( ) = 0

c〈 〉 − cm = Λ1p
∂cm

∂z
--------

dcm

dz
-------- = − Dar c〈 〉( ), with cm z= 0 = cm in,

c〈 〉 − cm = Λ1p
dcm

dz
--------  = − Λ1pDar c〈 〉( ),

u〈 〉dCAm

dx
----------- = − R CA〈 〉( ), with CAm x = 0 = Cm in, ,

C〈 〉  − Cm = − tmixR CA〈 〉( ),

1
Pe
------d

2 c〈 〉
dz2

------------ − 
d c〈 〉
dz

---------- − Dar c〈 〉( )  = 0; 0 z 1< <

1
Pe
------d c〈 〉

dz
---------- = c〈 〉  − cin〈 〉 @z = 0;

d c〈 〉
dz

---------- = 0 @z = 1

1
ξ
--- ∂

∂ξ
------ ξ∂c

∂ξ
------ 

 
 = p

∂c
∂t
----- − 

p

Per
2

-------∂
2c

∂z2
-------  + 2 1− ξ2( )∂c

∂z
-----
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The initial and boundary conditions are given by Eq. (81) as in thePer
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case of homogeneous reactors. However, as the reaction occurs on
the tube wall instead of the bulk, the boundary condition at the tube
wall is not Neumann as in homogeneous reactors, but of the form:

(91)

In the above equations, cw is the surface/wall concentration of spe-
cies A, rw(cw) is the dimensionless intrinsic rate of surface reaction,
Das is the reactor scale Damköhler number, which are given by

(92)

while the other symbols retain their usual meanings. We assume
that p<<1 while Per and Das are order one parameters.

It may be noted that the above set of equations has a zero eigen-
value and a corresponding constant eigenfunction for p=0, making
spatial averaging by L-S technique possible. Using the averaging
theory outlined in section 2, we obtain c' as

(93)

and the spatially averaged low-dimensional model to O(p) as

(94a)

(94b)

(94c)

We note that the averaged model is now expressed in terms of three
modes: the cup-mixing, spatial and wall concentrations. The cup-
mixing and wall concentrations are necessary to describe the mass
transfer between the bulk and the wall while the two modes cm and

 describe the micromixing that occurs in the fluid phase, due to
transverse velocity gradients and transverse molecular diffusion.
Traditional two-phase models of catalytic reactors that use only the
wall and cup-mixing concentrations ignore this term which can be
important in the transient operation of the reactor. The initial and
boundary conditions for this averaged model are same as those in
the case of homogeneous tubular reactor.

It should be noted that it is possible to eliminate  from Eq.
(94) and write it in the following two-mode form:

(95a)

(95b)

In this form, the applicability of the model is limited to the param-
eter range in which the term in square bracket does not vanish. We
now consider various limiting cases of this model.

with negligible axial diffusion (Per>>1). For this case, Eqs. (94) o
(95) reduce to the two-mode form

(96)

In this form, the two-mode model is identical to the classical stea
state two-phase model of a tubular catalytic reactor with neglig
axial dispersion. There is also a striking similarity between the tw
mode models for homogeneous reactors and two-phase mode
catalytic reactors in the practical limit of Per>>1. This can be seen
when the steady-state models are rewritten as

(Homogeneous Tubular Reactor) (97

(Tubular Catalytic Reactor) (98)

where Λ1=1/48 and Λ2=11/48. The reciprocals of these numbe
are the asymptotic Sherwood numbers or dimensionless mass 
fer coefficients for exchange between the two modes. We can 
see the one-to-one correspondence between the two-mode m
of homogeneous reactions and the two-phase models of cata
reactions. For example, just as the reaction rate in the two-p
model is not evaluated at the mixing-cup concentration cm but at
the wall concentration cw, similarly the reaction rate term in the two
mode model is evaluated at the spatially averaged concentr

. Also, analogous to the dimensionless two phase transfer 
(Λ2) in the two-phase model is the dimensionless local mixing ti
(Λ1) in the two-mode model.

The second limiting case we consider is that of linear kine
with negligible axial diffusion (Per>>1). For this case, the average
model can be written in terms of the cup-mixing concentration a

(99)

where

(100)

is the local Damköhler number. For the case of φs
2
�0 (slow wall

reaction), Eq. (99) reduces to

(101)

while for the case of φs
2
�∞ (infinitely fast wall reaction or the mass

transfer controlled limit), it may be written as

(102)

Comparing this with the slow reaction case, we note that the e
tive velocity has increased (by a factor 1.83); the dispersion co

∂c
∂ξ
------

ξ = 1

= − p
Das

2
--------rw cw( ).

cw = c ξ = 1
= c〈 〉  + c' ξ = 1

rw cw( )  = 
Rw CAw( )
Rw CR( )
-------------------,

Das = 
2LRw CR( )

u〈 〉aCR

-----------------------,

c' ξ z t, ,( ) = p
∂ c〈 〉
∂z

---------- − 
1
12
------  + 

ξ2

4
---- − 

ξ4

8
----  + pDasrw c〈 〉( ) 1

8
---  − 

ξ2

4
----  + O p2( ),

= p
∂ c〈 〉
∂z

---------- − 
1
12
------  + 

ξ2

4
----  − 

ξ4

8
----  + pDasrw cw〈 〉( ) 1

8
---  − 

ξ2

4
----  + O p2( ),

∂ c〈 〉
∂t

---------- + 
∂cm

∂z
--------  − 

p

Per
2

-------∂
2 c〈 〉
∂z2

------------  + Dasrw cw( ) = 0,

cw − c〈 〉 = 
p
24
------

∂cm

∂z
-------- − 

p
8
---Dasrw cw( ) + O p2( ),

cm − c〈 〉 = − 
p
48
------

∂cm

∂z
-------- + 

p
24
------Dasrw cw( ) + O p2( )

c〈 〉

c〈 〉

1− 
p
24
------Das

drw

dc
------- cw( ) ∂cm

∂t
--------  + 

∂cm

∂z
-------- + 

p
48
------

∂2cm

∂z∂t
---------- − 

p

Per
2

-------
∂2cm

∂z2
---------- + Dasrw cw( )  = 0

cw − cm = 
p
16
------

∂cm

∂z
--------  − 

p
6
---Dasrw cw( )

cw − cm

11p
48
--------- 

 
---------------  = 

dcm

dz
--------  = − Dasrw cw( ), with cm z= 0

= cm in, .

dcm

dz
-------- = 

c〈 〉  − cm

Λ1p
----------------- = − Dar c〈 〉( ), with cm z= 0

= cm in, ,

dcm

dz
-------- = 

cw − cm

Λ2p
--------------- = − Dasrw cw( ), with cm z= 0

= cm in, .

c〈 〉

2
3
---  + 

1
3
---
1+ 

φs
2

24
------

1+ 
φs

2

6
----

-------------
∂cm

∂t
--------  + 1+ 

φs
2

16
------

1+ 
φs

2

6
----

------------
∂cm

∂z
--------  + 

p
48
------

1+ 
φs

2

24
------

1+ 
φs

2

6
----

-------------
∂2cm

∂z∂t
---------- + 

Das

1+ 
φs

2

6
----

------------cm = 0

φs
2

 = pDas

∂cm

∂t
--------  + 

∂cm

∂z
--------  + 

p
48
------

∂2cm

∂z∂t
---------- + Dascm = 0

∂cm

∂t
--------  + 

11
6
------

∂cm

∂z
--------  + 

p
144
---------

∂2cm

∂z∂t
----------  + 

8
p
---cm = 0
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The first limiting case we consider is that of steady-state limit cient is reduced by a factor 3 while the apparent reactor scale Dam-
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köhler number changed from Das to 8/p.
The last limiting case we consider is the practical case of long

tubes where the axial dispersion term may be neglected. For this
case, it is more convenient to write the three model given by Eq.
(94) in the following form

(103a)

(103b)

(103c)

with initial and boundary conditions

(103d)

This model reduces to the two-phase model given by Eq. (96) under
steady-state conditions. However, for the general case of time vary-
ing inlet conditions this model retains all the qualitative features of
the full partial differential equation model while the traditional two-
phase model which does not distinguish between cm and  ignores
the dispersion effect in the fluid phase.

SUMMARY AND DISCUSSION

We have shown in this work that dispersion caused by trans-
verse velocity gradients and molecular diffusion can be described
by averaged models that are hyperbolic in the longitudinal coordi-
nate and time and containing an effective local time (or length) scale.
This description overcomes the main deficiencies of the literature
approaches to describe dispersion by using parabolic averaged mod-
els. We have also shown that the hyperbolic models can describe
the dispersion effects as well as the parabolic models, have a much
larger domain of validity and retain the essential physics contained
in the original more detailed models.

The rigorously derived multi-mode low-dimensional models of
reactors and chromatographs in this work are quite different from
the intuitively written and widely used models in the chemical engi-
neering literature!

We have considered here only unidirectional velocity fields and
straight channels. However, the main ideas and the averaging pro-
cedure can be extended to more general cases (e.g. dispersion in
porous media or packed beds, non-isothermal systems and multi-

phase reactors). In addition, though we have derived the aver
models for chromatographs and reactors, we have not presen
detailed analysis or solutions of these models. This will be purs
in future work.
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∂ c〈 〉
∂t

---------- = − 
24
p
------ 11 c〈 〉  − 8cm − 3cw[ ]

∂cm

∂z
--------  = 

48
p
------ 4 c〈 〉  − 3cm − cw[ ]

24
p
------ 3 c〈 〉  − 2cm − cw[ ] = Dasrw cw( )

c〈 〉 z t = 0,( )= c0 z( ); cm z t = 0,( )= cm0 z( ); cm z = 0 t,( )= cm in, t( )

c〈 〉
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